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ARSTRACT

Pressure distributions and boundary-layer data were obtained
on three diffevent diameter models used for afterbody studies in
the Lewis Research Center 8- by 6-Foot Supersonic Wind Tunnel to
determine the guality of the local flow approaching the afterbody
region. The support metheds for these models included sting mounts
and various types of support struts appropriate for jet-exit models.
Data were obtained at zero degrees angle-of-attack and Mach numbers
From 0.556 to L.5. Afterbody pressure drag data and the effects of
boundary-layer momentum thickness on afterbody pressure drag were
also obtained on several models for 15-degree conical bezttails
with jet-boundary simulators.

SUMMARY

on three differvent diameter models used for afterbody studies in
the Lewis Research Center 8- by 6-Foot Supersenic Wind Tunnel to
determine the gquality of the local flow approaching the afterbody
vegion. The support methods for these models included sting mounts
and various types of support struts appropriate for jet-exit models.
Data were obtained at zero degrees angle-of-attack and Mach numbers
from 0.56 to 1.5. Afterbody pressure drag data and the effevts of
boundary-layer momentum thickness on afterbedy pressure drag were
also obtained on 15-degree conical boattails with jet-boundary simu-
lators.

Pressure distribution and boundary-layer data were obtained

Installation effects were generally minor at subsonic speeds
for all models tested. The largest installation effects occurred
at Mach numbers between 1.1 and 1.5 and were the greatest for the
strut -scupported models. The single-swept strut provided the least
disturbance of all of the styut systems tested ard should be con-
sidered for cold-flow jet-exit models. The strut-sup orted model
curvently heing used at the Lewis Research Center provided boattail
pressure drags that were relatively free from installation effects
outside the low supersonic speed range. In general, increasing



boundary-layer momentum thickness resuited i

pressure-drag coefficient, particularly at high :

INTRODUCTION

The Lewis Research Center is conducting wind turmel programs
to study the performance of exhaust nozzles for sirbreathing propul-
sion systems (ref. 1-4). As part of this effort, pressure-drag
chapactepistics of various afterbody shapes have been investigated
on isolated nacelles, both with and without a jet (ref. 5 and 5) ,
under a simulated wing (ref. 7), and on nacelles mounted at the
trailing edge of a delta wing using a model of the F-106B aircraft
(ref. 8). During the course of these studies, it was observed that
pressure drag of geometrically-similar boattails was influenced by
tunnel installation technigues and by geometric features of the
model forebodies. In most wind tunnel tests of exhaust nozzles, it
is particularly difficult to obtain interference-free data since
jet models usually preclude the use of a support sting and require
a supporting strut ahead of the nozzle. These struts can be relatively
large since they must support the model and house instrumentation
and air lines. Details of the design of support struts become im-
portant since they are a source of disturbance to the local flow field
approaching the nozzle. Thus, comparison of boattail drag and nozzle
performance from different wind tunnel programs and facilities be-
comes difficult. ’

To illustrate the problems of support interference on jet exit
measurements, this report presents pressure distributions measured
in the 8- by 6-Foot Supersonic Wind Tumnel for three different diameter
models. ‘The support methods for these models included sting mounts
and various types of support struts appropriate for jet-exit models.
These distributions indicate deviations in the quality of the local
flow approaching the nozzle which vary with support method. Data
ave presented at zero degrees angle-of-attack at Mach numbers from
0.56 to 1.5, In addition, boundary-layer data and its effect on
the afterbody pressure drag of 1l5-degree conical boattails with jet-
boundary simulators are also press ted. Finelly, the boattail pressure
drags measured on the jet-exit model currently in use at the Lewis
Research Center are compared to those obtained with a small diameter
sting-mounted model.

SYMBOLS
A area
Q chord

Cp drag coefficient - drag/qghp,x
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P static pressure

g dynamic pressurs

T radius

t thickness

v velocity

X mezsurement parallel to model axis

radisl distance Irom model surlfzce

O T
Chinosness

mentum thickness

increment
Subscripts
max W A
V) toattail
0 free~astream

APPARATHS AND PROCEDURE

A suwmmary of all model configurstions is shown in teble I.
Four basic models were evaluated for this test: (1) a sting-
supported 10.16 cm diameter model; (2) a sting-supported 20.32 om
diameter model with two swept dummy struts; (3) a sting-supported
20.32 om ﬁl meter model with and without a single-swept dummy strut:

and (%) & .59 cm diameter single straight strut-supported medel.
The laltter ,H*i was designed for testing with and without

air jet and the model curvently being used at the Lewis

{enter to the thrust minus g

{eagay raf. 1L-i}.

NOZzZ1le ¢con



Figure 1 shows the tunnel installation and instrumentation
details of the 10.16 cm model. 1t had a 1i- > half-angle
conical forebody, and stings having diameters of U.U05 and 0.670 dpgx
were used for model support. The sting with ciameter equal to
the model base diameter of 0.670 dpgx was used with the boattail
afterbody to simulate the jet boundary that would exist with an
exit-to-local-static-pressure ratio of 1.00. Figures 1(a), L(b),
and 1(c) show schematic diagrams of the 10.16 cm model with cylindrical
sections 11.53 dpgx, 655 dmgx, and 4.72 dpgx in length. Geometric
and instrumentation details of the cylindrical afterbody and conical
afterbodies are shown in figures 1(d), l(e), and 1(f). The cylindrical
afterbody was used to evaluate the static pressure environment of
the afterbody region as influenced by terminal shock waves, wall-
reflected expansion and compression waves from the forebody, and
wall-generated disturbances. Two l5-degree conlical boattails were
investigated; one had a sharp edge at the nacelle juncture, fig. 1l(e),
and the other had a 0.50 dygx radius of curvature, fig. 1(f). Both
boattails had a ratio of base diameter to maximum diameter of 0.67.
The instrumentation of the rearward-facing portion of the afterbodies
was area weighted in order to facilitate the calculation of boattail
pressure drag. The method of instrumentation and calculation is
described in detail in reference 6. The instrumentation along the
cylindrical portion of the model is shown in figures 1(g) and L(h).
Figure 1(i) shows details of the boundary-layer rake which was used
to survey the local flow field ahead of the afterbody region and to
measure boundary-layer thickness and momentum thickness. The boundary-
layer survey plane was located 0.25 dmgx ahead of the model-afterbody
interface. The model was tested in a test section with 3.1 percent
porosity walls, and model blockage was 0.18 percent.

Figure 2 shows the tunnel installation and instrumentation
details for one of the 20.32 cm models. This model wes sting sup-
ported but used two dummy struts mounted to the tunnel side walls.
These struts were representative of those required for support of
a cold-air jet-exit model of the type described in reference 9.

The model forebody was a 10-degree half-angle conical tip followed
by a 24.7U dpax circular arc; overall 1/dmax of the nose section

was 5.0. The dummy struts were swept back at 45 degrees with a
thickness-to-chord ratio of 0.09. The leading-wedge total angle

was 15 degrees, and the trailing-wedge angle was 220541, Figure 2(a)
shows a plan view of the model with cylindrical sectiomn length of
11.64 dpmax- Figure 2(b) shows the cylindrical afterbody that was
used to evaluate the static pressure environment of the afterbody
region. Figure 2(c) shows the static pressure instrumentation on
the cylindrical portion'of the model. The test section wall porosity
was 5.8 percent for this installation and model blockage was 0.73
percent, exclusive of support struts, and 2.58 percent with struts.
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X which also was representative of that reqguirved for
ert of a cold-sir jet-exit model. The strut was swept at 30
degrees and the thickness-to-chord ratio was 0.0673. Leading =nd
trailing-wedge angles were 15 degrees. The model was tested with
a test section wall porosity of 5.8 percent. Model blooksges

0.73 percent without the strut and 1.86 percent with the strat.

The tunmel installation and instrumentation details of the
e, > shown in Tigure 4. Use of this model configura-

tion in det-sxit tests is reported in references 1 to 4. The model
fnwrzmdv was 8 tangent ogive with an L/dmgx of 3.0. The model was
supported by s single sfrright strut with a thickness-to-chord ratio
of 0,035, | roand treiling-wedge angles were L0 degrees. The
model cvlindri . saction le ngth was 13.15 dmax. Although & support
sting was ool used, the boattailed afterbody was tested with & simi-
lated jet with & diameter of 0.670 dmax. Figures H(b) and 4{c)
show the sfterbody geometries evaluated with this model. The boattailed
aTterbody geometricully similar to that tested on the 1l0.16 om
madel , and 5 instrumented in the same manner. Figurve 4(d) shows
the static ire instrumentation along the cylindrical perticn of
the model 90§ gnd 180 degrees from the vertical centerline.
Derrils o he boundary-layver rakes are shown in figure L{e). Three
rokes ware used tu survey the boundary layer just ahead uf the end
of the model. The model was tested in a test section with walls of
5.8 percent porcsity. Model blockage was 0.82 percent, exclusive of
the support strut, and 1.93 percent with the strut.

- e distvibutions on all the models were ratioed to a
computed valiwe of free-stregm static pressure, pg, upstream of the
model nose. in pricr calibrations of this tunmel (ref. 10 and 11}
5 relationship was determined between the operational variazbles
{compresscr ed, flexible nozzle position, second thr E
end plenum chamber suction pressure) such that the flow was most
yniform over the length of the test section and so that medel pres-
sure distributions mosTt nezrly matched those of flight vehicles. For
each af these t settings, the free-stream Mach number was
determined from the raetis of an average tunnel wall statie
{near the beginning of the perforated region) to free-stre
pressure. At Mach numbers below 1.5 it was determined tha
total or = wes egual to the average tunnel bellmouth total pres-
sure. in subseguent testing of research models, the free-stream

fa)
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Mach number is controlled by this prior calibration of the tunnel
operational variables. The free-stream static pressure is computed
from the measured bellmouth total pressure and the isentropic
relationship with free-stream Mach number. Although a measured
wall static pressure could also be used, it is sensitive to flow
disturbances from the nose of the research model, whereas the
measured bellmouth pressure is not. Therefore, the computed value
is regarded as being more reliable.

RESULTS AND DISCUSSION

The pressure distributions on the four models with cylindrical
afterbodies are shown in figures 5, 6, 7, and 8. Data are shown
over the length of the model from the cone-shoulder juncture for
the sting-mounted 10.16 cm model and aft of the struts for the
20.32 cm and 21.59 com models. These distributions are used to note
the magnitude and location of disturbances on the models by comparing
local pressures to free-stream static pressure. The afterbody
locations are indicated on the sketches at the top of each figure
to facilitate a comparison of disturbances in the region of the
afterbody over the range of Mach numbers tested.

The pressure distributions along the 10.16 cm sting-mounted
model are shown in figure 5 at several Mach numbers. There were
no major disturbances at the subsonic speeds as indicated by the
flat pressure distributions in the vicinity of the afterbodies. In
general, the pressure downstream of the shoulder recovered to 0.99
of free-stream static pressure. A decrease in pressure can -be
seen near the aft edge of the model; however, as indicated in
reference 10, this is a normal decrease resulting from flow expansion
around the model base. At Mach 1.0 the terminal shock appears near
the location of the afterbody on the shortest (4.72 dpax) model.
Identification of the disturbances on the figures at Mach numbers
greater than 1.0 were obtained from calibration data for a similar
10.16 cm model reported in reference 10. Results at Mach 1.0 and
Mach 1.1 indicate that the terminal shock would be located near the
afterbody of the intermediate (6.55 dmax) model at Mach 1.05. At
Mach 1.1, the terminal shock is positioned near the afterbody lo-
cation of the long (11.53 dmax) model. A tunnel wall disturbance
was observed at the afterbody location of the 4.72 dmax and 6.55
dmgx models at Mach 1.2, and the 11.53 dpgx model at Mach 1.26. No
major pressure disturbances were noted at Mach 1.37 or 1L.U47. 1In
general , the magnitude of the disturbances are not large on this
model and varied from 3 to 5 percent of free-stream static pressure
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The pressure distributions along the 21.59 cm single straight
strut-mounted model are shown in figure 8. Due to the length of
this model, the technique for setting tunnel conditions described
in reference 11 was again used at subsonic speeds. As seen in
figure 8, these tunnel settings resulted in favorable pressure
distributions aft of the strut at the subsonic speeds. The maximum
deviation in the region upstream of the afterbody juncture is
observed at Mach 0.9 where the pressure level is approximately
0.98 of free-stream static. No major pressure disturbances were
noted in the region of the afterbody at speeds up to Mach 1.0.

At the higher speeds, results for the 20.32 cm diameter sting-
mounted model are again repeated for reference purposes to indicate
strut effects. With the strut, large disturbances were present

at Mach numbers from 1.10 to 1.46 with magnitudes of 8 to 19 percent
of free-stream static pressure. The disturbances with the greatest
magnitudes were observed at Mach numbers 1.20 and 1.26. It is
probable that all afterbody drag data obtained at Mach numbers from
1.10 to 1.46 are influenced by model and tunnel disturbances. The
general magnitude of the disturbances in the supersonic region was
about the same for the 20.32 cm double-strut model and the 21.59 cm
single straight-strut model, although the location of the disturb-
ances was different for the two models.

The magnitude of disturbances measured on each of the models
over the range of Mach numbers investigated is summarized in figure 9.
Tor the sting-supported models, only the pressures on the last eight
model diameters of length were considered, and for the strut-supported
models, the last three model diameters. The two sting-supported
models generally had minor disturbances throughout the Mach number
range. Both the single-straight strut and the double-swept strut
showed large disturbances at Mach numbers from 1.1 to l.5. The
single-swept strut appears to be the most attractive of the three
strut configurations for supporting cold-air jet-exit models. The
maximum disturbance for this model was less than 10 percent of
free-stream static pressure. This was not much greater than that
obtained with the sting-supported models, which had maximum disturb-
ances of 6 percent of free-stream static pressure.

The afterbody boundary-layer characteristics for the 10.16 cm
model are shown in figure 10 and are relatively insensitive to Mach
number. The boundary-layer thickness was taken as that point where
the local velocity was 99 percent of the maximum velocity at the
end of the rake. Typical boundary-layer profiles for the three
model lengths are shown in figure 11. These profiles are compared
with a 1/7 power profile as shown by the solid line and indicate a
fully-developed turbulent boundary layer. The 21.59 cm model
boundary-layer characteristics are shown in figure 12 and are also
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these configurations are in a region {(8/dys, from 0.012 to 0.022)
where the effects of momentum thickness are relatively minor.

The results presented in figure 16 indicate that the boattail
pressure drag measured on the larger strut-supported jet-exit model
agree favorably with those measured on the smaller sting-supported
model. Both models indicate a sharp reduction in boattail pressure
drag at a Mach number of 1.1 as the terminal shock passes over the
boattail. It is concluded, therefore, that the jet-exit model
provides external drag that is relatively free from installation
effects, particularly at subsonic speeds.

SUMMARY OF RESULTS

Pressure distributions on three different diameter models used
for afterbody studies in the 8- by 6-Foot Supersonic Wind Tunnel
were obtained to determine the quality of the local flow approaching
the nozzle. The support methods for these models included sting
mounts and various types of support struts appropriate for jet-exit
models. Boundary-layer data and the boundary-layer effect on after-
body pressure drag for 15° boattails with jet-boundary simulators
were also obtained. Also boattail drag measurements were compared
for several models. The following observations were made:

1. At subsonic Mach numbers, static pressures measured
on all models tested were generally within 1 to 2
percent of free-stream static pressure. The peak
static pressure disturbances were obtained at
Mach numbers from 1.1 to 1.5. These disturbances
were within 6. percent of free-stream static pressure
for the sting-supported models and as large as 20
percent for the strut-supported models.

2. Based on measured static-pressure distributions, the
single-swept strut provided the least disturbances of
the three strut systems evaluated. It would warrant
serious consideration as a support system for cold-
flow jet-exit models.

3. The strut-supported jet-exit model in use at the Lewis
Research Center provides boattail pressure drags that
are relatively free from installation effects outside
the low supersonic speed range.

4., In general, increasing boundary-layer momentum thickness
resulted in reduced boattail pressure-drag coefficients.
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SUMMARY

TABLE I CONFIGURAT|{ON
MODE L NOSE STRUT | MODEL | AFTERBODY
DIAMETER] SHAPE Lt .
10.16 cm | 20° CONE | NONE 11.§3 | CYLINDRICAL
; I5° SHARP
15° RADIUS
6.55  |CYLINDRICAL
4 /5 ° SHARP
IS® RADIUS
4.72  {CYLINDRICAL
é ; 15° SHARP
! ? I5° RADIUS
20.32 cm {CIRCULAR-ARC{DOUBLE SWEPTL  [],64 CYLINDRICAL
; 30° CONE (SINGLE SWEPT| 13.264 | CYLINDRICAL
NONE 13.2¢ CYLINDRICAL
21.59 e [TANGENFOGIMY(SINGLE | 13,15 | CYLINDRICAL
1 Y= 3.0) STRAIGHT)); IS * SHARP
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